FORMULATION DISPERSION STABILITY SYMPOSIUM

Turbiscan, an easy and efficient way for physical stability measurement

Pascal Da Costa – October 19th 2021

www.formulaction.com

STABILITY & SIZE MICRORHEOLOGY

RHEOLOGY ON CHIF

Follow us on

- Formulaction (Toulouse, FR) is a leader in stability and microrheology measurements.
 - ✓ Company created in 1994
 - ✓ 3 ranges of products: Turbiscan, Fluidicam & Rheolaser
 - $\checkmark~$ Direct office in the USA (Columbus, OH) , Germany &
 - distribution : + 40 countries

- France with the second second
- ✓ Over 2,500 instruments, Over 2300 publications, 200+ patents
- Formulaction mission : Provide characterization tool to the formulators in cosmetics, food, pharmaceuticals, oil & petroleum, chemicals, paint & ink, electronics....

FORMULATION

« overall know-how to develop and manufacture products with desired properties as stated by the specifications »

PHYSCIAL STABILITY Introduction

What is a liquid dispersion ?

Cosmetic

Ink & Paint

Pharmaceutical

Oil & Petroleum

OIL

PHYSCIAL STABILITY

What is a liquid dispersion ?

A mixture

Multiple ingredients, non miscible phases (dispersed phase and continuous phase)

Different types

- Liquid/liquid = emulsion
- Solid/liquid = suspension
- Gas/liquid = foam

Stable/Unstable

For user appreciation, the formulation must remain stable

PHYSICAL STABILITY Definitions

• What is considered a Stable formulation ?

Initial state

In practice, no such product exist

Every system evolves

Phyiscal unstability phenomena

Particle size increase Flocculation

Coalescence

Migration phenomena Creaming

Sedimentation

PHYSICAL STABILITY Classical tests

⇒ Classical method for stability determination BOTTLE TEST

- Direct Method
- Inexpensive
- Corresponds to real conditions (no stress...)

But What if the change is not easily visible ??

Limitations of the bottle test:

- Not sensitive -> may require several months and high temperatures
- Only sensitive to particle migration
- Not Objective : Depends on the Operator
- Doesn't quantify the phenomena

After

What is the alternative ?

MULTIPLE LIGHT SCATTERING

TURBISCAN®

Analyses migration destabilization phenomena

AND

Size variation on samples with particle size from 10nm to 1mm at concentrations from 10⁻⁴% to 95% v/v

Analyze the sample AS IT IS!

No dilution, no stress, no probes Same conditions as visual tests Only faster and more precisely

PHYSICAL STABILITY Turbiscan[®]

www.formulaction.com

Backscattering and Transmission signals depend on :

d : <u>Particle size</u> & Φ : <u>Particle concentration</u>

Scan are made all over the sample height and periodically

Signal variation → Variation in the sample → Monitoring of stability

Single scan = **Size**

Multiple scans, if variation = **DESTABILIZATION**

www.formulaction.com

Variation of particle concentration

ESTAPOR latex suspension (polystyrene in water)

Opaque sample

Increase in BS at the top Decrease in BS at the bottom

www.formulaction.com

Variation of Particle size

Latex suspensions from ESTAPOR (polystyrene in water) $\phi = 1\%$, np = 1.59, nf = 1.33, Wavelength= 880nm

Agglomeration of particles

X hours

Latex suspensions from ESTAPOR (polystyrene in water)

www.formulaction.com

Combination of size increase and particle migration

Variation of particle concentration

ESTAPOR latex suspension (polystyrene in water)

 $d = 0.3\mu m, np = 1.59, nf = 1.33, Wavelenght = 880nm$ $100 \qquad \bullet T(\%) \\ \bullet BS(\%) \\ \bullet Model \\ \bullet Mo$

SMLS as a tool for size measurement

Why use the turbiscan for size measurements?

Measure concentrated samples

Non-Destructive

Simple – no lengthy preparation

1 Measurement in 25 seconds

Size measurements

Follow the evolution of the

sample over time

Average particle size measurements

Large particle size range

\Rightarrow Ranking of stability thanks to TSI

Turbiscan Stability Index is THE stability parameter!

tsi =
$$\frac{\sum_{h} |\operatorname{scan}_{i}(h) - \operatorname{scan}_{i-1}(h)|}{H}$$

tsi

tsi 🔆 : the ultimate parameter for stability measurements

- One-Click parameter
- Easy, Pragmatic, Automatic and Fast Answer
- ONE unique number to rank & compare samples
- Takes in account ALL DESTABILIZATIONS
- The most suitable and robust tool to quantify and rank samples
- NO information required

⇒ The STABILITY CRITERIA

Applications

STABILITY & SIZE

\Rightarrow Step 1 : Identify the best surfactant

3 formulations :

Reference

Surfactant 1

Surfactant 2

- Best Surfactant is the Surfactant 2
- Answer in less <u>than 1 day</u>
- Quantification with the TSI

⇒ Step 2 : How much surfactant should be used

 \Rightarrow 1% of surfactant is the optimum concentration for this formulation

Turbiscan data General application - stabilizers

⇒ Stabilization by viscosity increase : Adjust the use of the polymer

- Use of the experimental design + TSI
- 16 formulations

Particle size variation + Migration

The amount of stabilizer can be optimized to adjust effectiveness and price

- Problematic : pigment tend to settle because of density difference
- Solution : increase viscosity (limited to 3mPa.s with some inkjet nozzle)
 - decrease particle size (induce colour changes)
- **Objective**: find the best comprise and test the best formulation

Turbiscan applications Migration of yellow pigments

Sediment thickness kinetics

Migration velocity : 0.88 mm/d

\Rightarrow Detection only in the first hours

TSI Applications Road Paint

- 4 different road paints were tested to determine their stability
- These samples are highly concentrated in pigment
 – no problem for the turbiscan
- 2 different solvents were used

Solvent B

Solvent A

TSI Applications Road Paint

Destabilisation Kinetics (Global)

Solvent A gives paint that is more stable
Results obtained in 4 days

Turbiscan applications PHARMACEUTICALS

www.formulaction.com

Destabilisation Kinetics (Global)

• After 8 minutes of analysis they could see which samples had a better stability

- Problematic: Temperature increase leads to proteins denaturation which consists in modifying interactions and going from transparent to opaque samples linked to size increase
- Solution: Histidine, an amino-acid, is currently used to protect therapeutical protein against denaturation.
- System: 8 samples of BSA 10%wt with different amount of histidine (mM) were analysed at 60° C

Protein denaturation with temperature

BSA protein – Pharmaceutics field

⇒ Increasing histidine concentration enables to keep lower diameter and closer to native state without denaturation

Turbiscan applications

Context : Treatment of Asthma

Evaporation of the propellant

Drug particles into lungs

- Requirements :
- High and constant quality
- Same dose each time (25-150µL)
- Same amount of active per zone

Correlation with timed medication delivery

 \Rightarrow Insufficient dose after 10 s

 \Rightarrow Too much dose after 10 s

Turbiscan applications HOME & PERSONAL CARE

10

0-

-20-

ΔBS (%)

TSI Applications

Perfume stability with different fragrances

Givaudan

TSI Values for Fragrances A, B and C added at different

- Aim Determine the stability of emulsions with added fragrances
- Fragrance A, B and C tested in the same emulsions, concentrations: 0%, 1% and 1.75%
- Usual test 45 days at 45°C

Turbiscan TSI Applications – Perfume stability with different fragrances

- Aim Determine the stability of emulsions with added fragrances
- Fragrance A, B and C tested in the same emulsions, concentrations: 0%, 1% and 1.75%
- Usual test 45 days at 45°C

Turbiscan applications Foam stability

Drainage – Thickness of drainage phase

Ripening – Diameter of bubbles

Turbiscan applications

\Rightarrow Choise of optimal stabilizer for chocolate milk

- Sedimentation : compute migration velocity
- Clarification: follow phase thickness of clarification layer
- Creaming : follow phase thickness of cream layer

\Rightarrow Different parameters for different phenomena

Turbiscan applications Chocolate milk

Choise of optimal stabilizer for chocolate milk \Rightarrow

From Sedimentation data

Stabilizer	Migration velocity (mm/h)
1	0.01
2	0.005
3	0.002

From global data

From Clarification data

Mean Value (Delta Backscattering)

\Rightarrow Stabilizer 3 is the most efficient

Turbiscan applications Ring formation of beverages emulsions

New Weighting

Agent

4

0.36

- \Rightarrow Ring (creaming layer) detected
- ⇒ New Weighting agent more efficient than the reference

1.5

Turbiscan applications ELECTRONIC

Turbiscan applications Carbon nanotubes

- Context : Carbon NanoTubes (CNT) are used to bring specific technical properties to materials (mechanical, electrical, thermal...)
- Properties :
- Extreme Van der Waals interactions
- High aspect ratio
- Problematic : need to assess to dispersibility of CNT

Turbiscan applications Carbon nanotubes

RAW t-MWNT In PEDOT

⇒ Surface modification of CNT enables to improve dispersibility

J.B. Yoo, et al., Diamond and related materials, 14 (2005) 1882-1887

TURBISCAN Technology Product Range

STABILITY & SIZE

World of Formulation

pascal.dacosta@formulaction.com Sample testing and demo : contact Golik More Application notes on www.formulaction.com

uestions

Follow us Linked in 😏 👎